Abstract

Recently, an entirely new class of bicyclic nucleoside analogs (BCNAs) was found to display exquisite potency and selectivity as inhibitors of varicella-zoster virus (VZV) replication in cell culture. A striking difference in their ability to convert the BCNAs to their phosphorylated derivatives was observed between the VZV-encoded thymidine kinase (TK) and the very closely related herpes simplex virus type 1 (HSV-1) TK. Whereas VZV TK efficiently phosphorylated the BCNAs, HSV-1 TK was unable to do so. In addition, the thymidylate (dTMP) kinase activity of VZV TK further converted BCNA-5'-MP to BCNA-5'-DP. The BCNAs (or their phosphorylated derivatives) were not a substrate for cytosolic TK, mitochondrial TK, or cytosolic dTMP kinase. Human erythrocyte nucleoside diphosphate (NDP) kinase was unable to phosphorylate the BCNA 5'-diphosphates to BCNA 5'-triphosphates. Under the same experimental conditions, the anti-herpetic (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) derivative was efficiently converted to BVDU-MP and BVDU-DP by both VZV TK and HSV-1 TK and further, into BVDU-TP, by NDP kinase. Our observations may account for the unprecedented specificity of BCNAs as anti-VZV agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.