Abstract

Translation affects messenger RNA stability and, in yeast, this is mediated by the Ccr4-Not deadenylation complex. The details of this process in mammals remain unclear. Here, we use cryogenic electron microscopy (cryo-EM) and crosslinking mass spectrometry to show that mammalian CCR4-NOT specifically recognizes ribosomes that are stalled during translation elongation in an in vitro reconstituted system with rabbit and human components. Similar to yeast, mammalian CCR4-NOT inserts a helical bundle of its CNOT3 subunit into the empty E site of the ribosome. Our cryo-EM structure shows that CNOT3 also locks the L1 stalk in an open conformation to inhibit further translation. CCR4-NOT is required for stable association of the nonconstitutive subunit CNOT4, which ubiquitinates the ribosome, likely to signal stalled translation elongation. Overall, our work shows that human CCR4-NOT not only detects but also enforces ribosomal stalling to couple translation and mRNA decay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.