Abstract

RNA 77, derived by selection amplification, accelerates its own conversion to Phe-RNA (relative to randomized RNA) more than 6 x 10(7)-fold, by using amino acid adenylates as substrate. A modified assay system allows measurement of slow rates of aa-RNA formation, which for disfavored amino acid substrates can be more than 10(4)-fold slower than phenylalanine. Thus unlike previously characterized self-aminoacylators, RNA 77 catalysis is highly amino acid selective. Remarkably, both rates of aminoacyl transfer and amino acid specificities are greater for RNA 77 than measured for protein PheRS. These data experimentally support the possible existence of an ancestral amino acid-specific translation system relying entirely on RNA catalysis. RNA 77 itself embodies a possible transitional evolutionary state, in which side-chain-specific aa-RNA formation and anticodon-codon pairing were invested in the same molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.