Abstract

ObjectivesThe present study aimed to assess the oxidative stress and the viability of dental pulp cells stimulated by lipopolysaccharide (LPS) and submitted to photobiomodulation (PBM) with infrared light-emitting diode (LED, 850 nm). DesignThree healthy primary teeth (n = 3) were collected and seeded in 24-well plates with 10 µg/mL of LPS to induce inflammatory mediator formation. The cells were irradiated (850 nm, 40 mW/cm2 and 80 mW/cm2) at the proposed radiant exposures of 0 (control), 4, 15, and 30 J/cm2 shortly after LPS supplementation. The tests were performed 24 h after irradiation to assess mitochondrial activity (MTT assay), the number of viable cells (Trypan Blue), cell morphology (Scanning Electron Microscopy - SEM), and the quantification of Nitric Oxide (NO) and Reactive Oxygen Species (ROS). The data were analyzed using Kruskal–Wallis and Dunn’s tests (p < 0.05). ResultsThe irradiated groups showed larger viable cells number than the non-irradiated group with LPS (p < 0.0001). All irradiation parameters decreased ROS concentrations after LPS application compared to the non-irradiated group (p < 0.05). All irradiation parameters enhanced the NO values compared to those of the control group (p < 0.05). The SEM images showed cells with regular morphology that adhered to the substrate. ConclusionsAccording to the parameters used in this study, the radiant exposure of 15 J/cm2 and irradiance of 40 mW/cm2 were the most effective irradiation parameters to stimulate and modulate oxidative stress in the primary teeth-derived dental pulp cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.