Abstract
Recently, two new influenza A-like viruses have been discovered in bats, A/little yellow-shouldered bat/Guatemala/060/2010 (HL17NL10) and A/flat-faced bat/Peru/033/2010 (HL18NL11). The hemagglutinin (HA)-like (HL) and neuraminidase (NA)-like (NL) proteins of these viruses lack hemagglutination and neuraminidase activities, despite their sequence and structural homologies with the HA and NA proteins of conventional influenza A viruses. We have now investigated whether the NS1 proteins of the HL17NL10 and HL18NL11 viruses can functionally replace the NS1 protein of a conventional influenza A virus. For this purpose, we generated recombinant influenza A/Puerto Rico/8/1934 (PR8) H1N1 viruses containing the NS1 protein of the PR8 wild-type, HL17NL10, and HL18NL11 viruses. These viruses (r/NS1PR8, r/NS1HL17, and r/NS1HL18, respectively) were tested for replication in bat and nonbat mammalian cells and in mice. Our results demonstrate that the r/NS1HL17 and r/NS1HL18 viruses are attenuated in vitro and in vivo However, the bat NS1 recombinant viruses showed a phenotype similar to that of the r/NS1PR8 virus in STAT1-/- human A549 cells and mice, both in vitro and in vivo systems being unable to respond to interferon (IFN). Interestingly, multiple mouse passages of the r/NS1HL17 and r/NS1HL18 viruses resulted in selection of mutant viruses containing single amino acid mutations in the viral PB2 protein. In contrast to the parental viruses, virulence and IFN antagonism were restored in the selected PB2 mutants. Our results indicate that the NS1 protein of bat influenza A-like viruses is less efficient than the NS1 protein of its conventional influenza A virus NS1 counterpart in antagonizing the IFN response and that this deficiency can be overcome by the influenza virus PB2 protein.IMPORTANCE Significant gaps in our understanding of the basic features of the recently discovered bat influenza A-like viruses HL17NL10 and HL18NL11 remain. The basic biology of these unique viruses displays both similarities to and differences from the basic biology of conventional influenza A viruses. Here, we show that recombinant influenza A viruses containing the NS1 protein from HL17NL10 and HL18NL11 are attenuated. This attenuation was mediated by their inability to antagonize the type I IFN response. However, this deficiency could be compensated for by single amino acid replacements in the PB2 gene. Our results unravel a functional divergence between the NS1 proteins of bat influenza A-like and conventional influenza A viruses and demonstrate an interplay between the viral PB2 and NS1 proteins to antagonize IFN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.