Abstract

Synchrotrons are capable of producing intense low-energy X-rays that enable the photoactivation of high-Z elements. Photoactivation therapy (PAT) consists of loading tumors with photoactivatable drugs and thereafter irradiating them at an energy, generally close to the K-edge of the element, that enhances the photoelectric effect. To date, three major photoactivatable elements are used in PAT: platinum (cisplatin and carboplatin), iodine (iodinated contrast agents and iododeoxyuridine) and gadolinium (motexafin gadolinium). However, the molecular and cellular events specific to PAT and the radiobiological properties of these photoactivatable drugs are still misknown. Here, it is examined how standard and synchrotron X-rays combined with photoactivatable drugs impact on the cellular response of human endothelial cells. These findings suggest that the radiolysis products of the photoactivatable drugs may participate in the synergetic effects of PAT by increasing the severity of radiation-induced DNA double-strand breaks. Interestingly, subpopulation of highly damaged cells was found to be a cellular pattern specific to PAT. The data show that the efficiency of emerging anti-cancer modalities involving synchrotron photoactivation strongly depends on the choice of photoactivatable drugs, and important series of experiments are required to secure their clinical transfer before applying to humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.