Abstract

Divalent metal ions play a crucial role in RNA structure and catalysis. Phosphorothioate substitution and manganese rescue experiments can reveal phosphate oxygens interacting specifically with magnesium ions essential for structure and/or activity. In this study, phosphorothioate interference experiments in combination with structural sensitive circular dichroism spectroscopy have been used to probe molecular interactions underlying an important RNA structural motif. We have studied a synthetic model of the P4-P6 triple-helical domain in the bacteriophage T4 nrdB group I intron, which has a core sequence analogous to the Tetrahymena ribozyme. Rp and Sp sulfur substitutions were introduced into two adjacent nucleotides positioned at the 3' end of helix P6 (U452) and in the joining region J6/7 (U453). The effects of sulfur substitution on triple helix formation in the presence of different ratios of magnesium and manganese were studied by the use of difference circular dichroism spectroscopy. The results show that the pro-Sp oxygen of U452 acts as a ligand for a structurally important magnesium ion, whereas no such effect is seen for the pro-Rp oxygen of U452. The importance of the pro-Rp and pro-Sp oxygens of U453 is less clear, because addition of manganese could not significantly restore the triple-helical interactions within the isolated substituted model systems. The interpretation is that U453 is so sensitive to structural disturbance that any change at this position hinders the proper formation of the triple helix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.