Abstract

ObjectivesDual incretin agonists are among the most effective pharmaceutical treatments for obesity and type 2 diabetes to date. Such therapeutics can target two receptors, such as the glucagon-like peptide-1 (GLP-1) receptor and the glucose-dependent insulinotropic polypeptide (GIP) receptor in the case of tirzepatide, to improve glycemia and reduce body weight. Regarding body weight effects, GIPR signaling is thought to involve at least two relevant mechanisms: the enhancement of food intake reduction and the attenuation of aversive effects caused by GLP-1R agonists. Although it is known that dual GLP-1R-GIPR agonism produces greater weight loss than GLP-1R agonism alone, the precise mechanism is unknown. MethodsTo address this question, we used mice lacking GIPR in the whole body, GABAergic neurons, or glutamatergic neurons. These mice were given various combinations of GLP-1R and GIPR agonist drugs with subsequent food intake and conditioned taste aversion measurements. ResultsA GIPR knockout in either the whole body or selectively in inhibitory GABAergic neurons protects against diet-induced obesity, whereas a knockout in excitatory glutamatergic neurons had a negligible effect. Furthermore, we found that GIPR in GABAergic neurons is essential for the enhanced weight loss efficacy of dual incretin agonism, yet, surprisingly, its removal enhances the effect of GLP-1R agonism alone. Finally, GIPR knockout in GABAergic neurons prevents the anti-aversive effects of GIPR agonism. ConclusionsOur findings are consistent with GIPR research at large in that both enhancement and removal of GIPR signaling are metabolically beneficial. Notably, however, our findings suggest that future obesity therapies designed to modulate GIPR signaling, whether by agonism or antagonism, would be best targeted towards GABAergic neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.