Abstract

Female mice were exposed to 300 R of 73–93 R/min X-radiation either as fetuses at 18.5 d post conception (p.c.) or within 9 h after birth. Combining the similar results from these two groups yielded a specific-locus mutation frequency of 9.4 × 10 −8 mutation/locus/R, which is statistically significantly higher than the historical-control mutation frequency, but much lower than the rate obtained by irradiating mature and maturing oocytes in adults. Other females, exposed at 18.5 days p.c. to 300 R of 0.79 R/min γ-radiation, yielded a mutation frequency that was statistically significantly lower than the frequency at high dose rates. The low-dose-rate group also had markedly higher fertility. It appears that the dose-rate effect for mutations induced near the time of birth may be more pronounced than that reported for mature and maturing oocytes of adults. A hypothesis sometimes advanced to explain low mutation frequencies recovered from cell populations that experience considerable radiation-induced cell killing is that there is selection against mutant cells. The reason for the relatively low mutational response following acute irradiation in our experiments is unknown; however, the finding of a dose-rate effect in these oocytes in the presence of only minor radiation-induced cell killing (as judged from fertility) makes it seem unlikely that selection was responsible for the low mutational response following acute exposure. Had selection been an important factor, the mutation frequency should have increased when oocyte killing was markedly reduced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call