Abstract
We show here, by high resolution sodium dodecyl sulfate gel electrophoresis, that the proportions of myosin heavy chain (MyHC) isoforms of mouse muscles are specifically shifted by hereditary neuromuscular diseases. In wild-type and dystrophic MDX anterior tibial muscle (TA) about 60% of the MyHC is IIB, 30% IIX, at most 10% IIA and <2% type I (slow). In myotonic fast muscles, hyperexcitability leads to a drastic reduction of MyHC IIB which is compensated by IIA. Slow muscles, like soleus and diaphragm, were only marginally changed by myotonia. The MyHC pattern of TA of spinal muscular atrophy (SMA) ‘wobbler’ mice is shifted to a faster phenotype, with nearly 90% IIB. In the SMA mutant ‘muscle deficient’, all four adult isomyosins are expressed in the TA. These findings may be relevant for the future diagnosis of neurological disorders both in mouse disease models and in human patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.