Abstract

Tetramethylammonium (TMA)- and tetrapropylammonium (TPA)-silica mixtures containing monovalent salts were studied to determine how salt impacts nanoparticle stability and organocation-silica interactions. Dynamic light scattering (DLS) results show that salt concentrations as low as 5 mM can induce nanoparticle aggregation. The extent of aggregation increases with the ionic size of the alkali-metal cations, consistent with the Hoffmeister series. Thus specific ion effects are observed in these mixtures. Pulsed-field gradient (PFG) NMR shows a more obvious increase in the self-diffusion coefficient of TPA than TMA in the presence of salt, indicating TPA is more easily displaced from the nanoparticle surface due to the background electrolyte. A two-site model is used to describe the exchange between tetraalkylammonuim (TAA) adsorbed on the nanoparticles and TAA in solution, from which the binding isotherms of the organocations at low electrolyte concentration was obtained and analyzed using the Langmuir formalism. This analysis also shows specific-ion effects, with the amount of TPA adsorbed to be much smaller than TMA and also much more sensitive to the presence of salt. In the context of the oriented aggregation mechanism proposed previously in the literature, the current work suggests one route for tuning the organocation-particle interaction and thus a route to controlling the rates of some steps in the mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.