Abstract

Protein characterization in situ remains a major challenge for protein science. Here, the interactions of ΔTat-GB1 in Escherichia coli cell extracts were investigated by NMR spectroscopy and size exclusion chromatography (SEC). ΔTat-GB1 was found to participate in high molecular weight complexes that remain intact at physiologically-relevant ionic strength. This observation helps to explain why ΔTat-GB1 was not detected by in-cell NMR spectroscopy. Extracts pre-treated with RNase A had a different SEC elution profile indicating that ΔTat-GB1 predominantly interacted with RNA. The roles of biological and laboratory ions in mediating macromolecular interactions were studied. Interestingly, the interactions of ΔTat-GB1 could be disrupted by biologically-relevant multivalent ions. The most effective shielding of interactions occurred in Mg(2+) -containing buffers. Moreover, a combination of RNA digestion and Mg(2+) greatly enhanced the NMR detection of ΔTat-GB1 in cell extracts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call