Abstract
Small aqueous ionic clusters represent ideal systems to investigate the microscopic hydrogen-bonding structure and dynamics in ion hydration shells. In this context, halide-dihydrate complexes are the smallest systems where the interplay between halide-water and water-water interactions can be studied simultaneously. Here, quantum molecular dynamics simulations unravel specific ion effects on the temperature-dependent structural transition in X-(H2O)2 complexes (X = Cl, Br, and I), which is induced by the breaking of the water-water hydrogen bond. A systematic analysis of the hydrogen-bonding rearrangements at low temperature provides fundamental insights into the competition between halide-water and water-water interactions depending on the properties of the halide ion. While the halide-water hydrogen-bond strength decreases going from Cl-(H2O)2 to I-(H2O)2, the opposite trend in observed in the strength of the water-water hydrogen-bond, suggesting that nontrivial many-body effects may also be at play in the hydration shells of halide ions in solution, especially in frustrated systems (e.g., interfaces) where the water molecules can have dangling OH bonds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.