Abstract

Streptomyces olivaceoviridis secretes a so far unique protein of 18.7 kDa (CHB1) which lacks catalytic activity. It interacts highly specifically with alpha-chitin, but not with beta-chitin, chitosan, or cellulose. Each of the five codons for tryptophan (Trp) in the chb1 gene was replaced by those for leucine (Leu) or tyrosine (Tyr). Eight corresponding mutant proteins and the wild-type protein were purified to homogeneity and their binding capacity to alpha-chitin was determined. The relative affinities to anti-CHB1 antibodies, the kinetics of binding, the dissociation constants, circular dichroism, and fluorescence emission spectra for three mutant types were compared to the characteristics of CHB1. The presented data lead to the following conclusions. (a) CHBI presents a highly flexible protein lacking alpha-helices. (b) Replacement of each of the buried Trp residues (Trp134 and Trp184) leads to conformational alterations and, in due course, to a considerably reduced binding affinity of the protein. (c) The exchange of the exposed Trp 57 by either Leu or Tyr results in relatively slight topological changes, but entails a loss of binding capacity of about 90%. (d) The dissociation constant was highest for the mutant protein [L57]CHB1 (2.17 microM), followed by [L134]CHB1 (0.91 microM) and [L184]CHB1 (0.26 microM), and lowest for the progenitor CHB1 (0.11 microM), indicating its strong affinity to the unsoluble substrate. (e) The data suggest that the exposed Trp57 contributes directly and significantly to the interaction of CHB1 with alpha-chitin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.