Abstract

Nitric oxide (NO) is a physiological inhibitor of platelet function and has vaso-dilating effects. Therefore, synthesized NO releasing agents are used e.g. in cardiovascular medicine. The aim of this study was to characterise specific effects of the short living agent MAHMA/NONOate, a NO donor of the diazeniumdiolate class, on human platelets.Whole blood was obtained from healthy volunteers. In washed human platelets, the MAHMA/NONOate induced phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) and cyclic nucleotide production were studied by Western Blot and by enzyme immunoassay kits. Agonist induced aggregation was measured in platelet rich plasma. Paired Student׳s t-test was used for statistical analysis.MAHMA/NONOate significantly stimulated platelet VASP phosphorylation in a concentration dependent manner and increased intracellular cGMP, but not cAMP levels, transiently. ODQ, a specific inhibitor of the soluble guanylyl cyclase, completely prevented VASP phosphorylation induced by low MAHMA/NONOate concentrations (5nM–15nM). The effects of higher concentrations (30–200nM) were only partially inhibited by ODQ. MAHMA/NONOate reduced platelet aggregation induced by low doses of agonists (2µM ADP, 0.5µg/mL collagen, 5µM TRAP-6) in a concentration dependent manner.MAHMA/NONOate leads to a rapid and transient activation of platelet inhibitory systems, accompanied by decreased platelet aggregation induced by low dose agonists. At low MAHMA/NONOate concentrations, the effects are cGMP dependent and at higher concentrations additionally cGMP independent. The substance could be of interest for clinical situations requiring transient and subtotal inhibition of platelet function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.