Abstract

The interaction of the hepatitis C virus (HCV) RNA-dependent RNA polymerase with RNA substrate is incompletely defined. We have characterized the activities of the HCV NS5B polymerase, modified by different deletions and affinity tags, with a routinely used homopolymeric substrate, and established apparent affinities of the various NS5B constructs both for the NTP and the template/primer substrates. We identified a uniquely tagged HCV NS5B RNA polymerase construct with a lower affinity (higher K(m)) than mature HCV NS5B for template/ primer substrate and highlighted the use of such a polymerase for the identification of inhibitors of NS5B activity, particularly inhibitors of productive RNA binding. The characterization of specific benzimidazole-5-carboxamide-based inhibitors, identified in a screening campaign, revealed that this class of compounds was non-competitive with regard to NTP incorporation and had no effect on processive elongation, but inhibited an initiation phase of the HCV polymerase activity. The potency of these compounds versus a panel of different NS5B polymerase constructs was inversely proportional to the enzymes' affinities for template/primer substrate. The benzimidazole-5-carboxamide compounds also inhibited the full-length, untagged NS5B de novo initiation reaction using HCV 3'-UTR substrate RNA and expand the diversifying pool of potential HCV replication inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.