Abstract

Lithium, valproate and carbamazepine decrease brain cAMP. Adenylyl-cyclase (AC), which synthesizes cAMP has nine membrane-bound isoforms (AC1-AC9). In this study we used COS7 cells transfected with cDNA of each of the isoforms to study the effect of a therapeutic concentration of each of lithium, carbamazepine and valproate on ACs activity. AC5 was the most inhibitable isoform by lithium and carbamazepine either when stimulated by forskolin or by a D1 agonist. Ten mM Mg2+ reduced lithium-induced AC5 inhibition by 70% and in silico analysis suggested that carbamazepine preferentially affects AC1 and AC5 by interacting with two amino-acids at the catechol-estrogen binding site region. Valproate did not inhibit any AC isoform suggesting it decreases cAMP levels via a different mechanism. AC5 knockout mice behaved in the forced-swim-test similarly to antidepressant- or lithium-treated wildtypes implying that AC5 inhibition may be involved in the antidepressant effect of lithium and carbamazepine. Specific AC5 inhibitors may be mood-stabilizers or antidepressants.

Highlights

  • Lithium, valproate and carbamazepine decrease brain cAMP

  • Specific inhibition of adenylyl-cyclase isoform 5 by mood stabilizers may be related to their mechanism of action

  • In this study we used COS7 cells transfected with cDNA of each of the isoforms to study the effect of a therapeutic concentration of each of lithium, carbamazepine and valproate on ACs activity

Read more

Summary

Introduction

Valproate and carbamazepine decrease brain cAMP. Adenylyl-cyclase (AC), which synthesizes cAMP has nine membrane-bound isoforms (AC1-AC9). Specific inhibition of adenylyl-cyclase isoform 5 by mood stabilizers may be related to their mechanism of action From 1st International Congress on Neurobiology and Clinical Psychopharmacology and European Psychiatric Association Conference on Treatment Guidance Thessaloniki, Greece.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.