Abstract

The tumor-specific Thomsen-Friedenreich antigen (TFα, CD176) is an attractive target for a cancer vaccine, especially as TF-directed antibodies play an important role in cancer immunosurveillance. However, synthetic TF vaccines have not overcome the low intrinsic immunogenicity of TF. Since natural TF-directed antibodies present in human sera are generated in response to microbes found in the gastrointestinal tract, microbial TF structures are obviously more immunogenic than synthetic TF. We recently isolated a new strain (D-6) of the human gut bacterium Bacteroides ovatus, which carries the true TFα antigen. Here, we present experimental data on the immunogenicity of this strain. Mice immunized with B. ovatus D-6 in the absence of adjuvants developed specific anti-TFα IgM and IgG antibodies which also bound to human cancer cells carrying TFα. Our data suggest that B. ovatus D-6 presents a unique TFα-specific immunogenicity based on a combination of several inherent properties including: expression of the true TFα antigen, clustering and accessible presentation of TFα as repetitive side chains on a capsular polysaccharide, and intrinsic adjuvant properties. Therefore, B. ovatus strain D-6 is an almost perfect candidate for the development of the first adjuvant-free TFα-specific anti-tumor vaccine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call