Abstract

Massive quartz-chakedony +/- opal nodules (plasma in gemology) represent a specific silica variety, which occurs in the laterite-like residues of pre-Miocene paleo-weathering of ultramafites in western Moravia (Moldanubian Zone, Bohemian Massit). These zonal silica nodules (ZSN) tend to have concentric texture with a dark green to green-brown core, pale green margin and a narrow white rim (outer surface zone). The most typical microscopic feature of ZSN is vermiform microstructure particularly in the two outer zones. Individual mines consist of micro- to non-crystalline SiO2 polymorphs with variable contents of H2O (quartz, chalcedony, moganite, opal-C/CT and opal-A). The predominant green colour is due to submicroscopic smectite pigment, while the brownish colour originated from decomposition of smectite to iron oxohydroxides. ZSN formed in subaerial, partially reducing conditions in the lower part of weathering crusts covering serpentinites. The whole process was preceded by component exchange (chloritization) along serpentinite -felsic rocks (granulite. migmatite, pegmatite veins) boundaries. The gradual silica migration and subsequent redistribution associated with the removal of aluminium, magnesium and iron led up to the formation of a zonal nodular texture dominated by SiO2 polymorphs. Newly formed minerals in micro-cavities and cracks of ZSN are represented by accessory pyrite and sporadic barite. Zonal silica nodules-bearing residues on serpentinites occur only in a narrow area which was originally covered by clay-sandy Miocene sediments of the Carpathian Foredeep in western Moravia. Probably late low-temperature fluid interaction between silicified serpentinite residuum (chlorite montmorillonite saprolite) and marine sediments may be the main factor controlling formation of ZSN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call