Abstract

The specific features of the synthesis and the physicochemical properties of new nanocomposite polymer electrolytes (NPE) based on poly(ethylene glycol) diacrylate, a liquid electrolyte, and silicon dioxide were studied. The kinetics of polymerization of the system in question were studied by isothermal calorimetry and the optimal conditions for the hardening of the NPE were selected. The dependence of the conductivity of the electrolyte samples on the amount of SiO2 nanopowder introduced, the presence of preliminary ultrasonic treatment of the nanocomposite mixture before the synthesis, and the storage duration of the samples was studied using the electrochemical impedance method. The maximum conductivity (4.3•10–3 S cm–1 at 20 °C) was observed for samples without preliminary treatment with the introduction of 6 wt.% of SiO2 and for the samples after ultrasonic treatment with 8 wt.% of SiO2. The electrolyte films with the optimal SiO2 content of 4 wt.% maintained their properties for 24 months.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.