Abstract

Numerical methods are used to study the effect of local and nonlocal nonlinear optical susceptibilities on the parameters of a soliton whose degree of ellipticity depends on time and that is formed at a distance of several dispersion lengths in a medium with the anomalous frequency dispersion. The rotation angle of the major axis of the polarization ellipse does not depend on time and linearly increases with an increasing propagation coordinate. If the tensor components of the local nonlinear susceptibility have opposite signs, the incident elliptically polarized pulse can propagate in the regime that involves the pulse splitting into components for which the absolute values of the electric-field degrees of ellipticity are close to unity. In this case, the electric-field vector at the center of the pulse rotates in the opposite direction with respect to the rotation at the edges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call