Abstract

The excitation spectra and kinetics of erbium photoluminescence and silicon interband photoluminescence in Si:Er/Si structures under conditions of high-intensity pulse optical excitation are studied. It is shown that, in the interband photoluminescence spectra of the Si:Er/Si structures, both the luminescence of free excitons and the emission associated with the electron-hole plasma can be observed, depending on the excitation power and wavelength. It is found that the formation of a peak in the erbium photoluminescence excitation spectra at high pumping powers correlates with the Mott transition from the exciton gas to the electron-hole plasma. It is demonstrated that, in the Si:Er/Si structures, the characteristic rise times of erbium photoluminescence substantially depend on the concentration of charge carriers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.