Abstract

The adsorption of CH2Cl2, CH3Cl, CCl4, and H2O vapors on the surface of multi-walled carbon nanotubes and alumina in the temperature range of 10—25 °C was studied. Dependences of the isosteric heat of adsorption on the surface coverage were plotted. The initial heat of adsorption of dichloromethane, chloroform, and CCl4 on Al2O3 was found to be equal to 71, 28, and 31 kJ mol–1, respectively. In most cases, adsorption on the oxide adsorbent was characterized by a higher heat of adsorption compared to that found on the carbon material, which is apparently related to chemical interaction of sorbed molecules with the OH groups of the alumina surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.