Abstract
Raman spectra of GaAs nanowhiskers that are grown on different substrates and differ from one another by the content of the sphalerite and wurtzite phases have been investigated. Special attention has been focused on the manifestation of structural features in the scattering spectra of nanowhiskers. It has been established that the nanowhiskers are characterized both by random inclusions of wurtzite layers in the sphalerite structure and by the continuous growth in the wurtzite phase. The interpretation of the scattering spectrum agrees with the concept of summation of the dispersion curves of the sphalerite structure upon transition to the wurtzite structure, which leads to a transformation of zone-boundary modes at the L point of the Brillouin zone into zone-center modes of the wurtzite structure and, as a consequence, to the appearance of a number of new fundamental modes of different symmetries. An analysis of the Raman spectra has revealed the formation of the hexagonal 4H polytype in narrow layers of nanowhiskers due to a random packing of hexagonal layers. The coexistence of the sphalerite and wurtzite phases in GaAs nanowhiskers completely correlates with the photoluminescence spectra measured for the same samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.