Abstract

The specific features of quantum oscillations of the magnetization in quasi-two-dimensional wide-band-gap antiferromagnetic semimetals with a low concentration of charge carriers have been considered theoretically. It has been shown that, in these systems, the Fermi energy determined from the analysis of the frequency of the de Haas–van Alphen oscillations according to the standard procedure can differ significantly from the true value. For the correct determination of the Fermi energy in the canted phase, it has been proposed to analyze quantum oscillations of the magnetization M not as a function of the inverse magnetic field 1/H, but as a function of 1/cosγ, where the angle γ characterizes the inclination angle of the magnetic field with respect to the plane of the quasi-two-dimensional semimetal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.