Abstract

Results of studying the paramagnetic and ordered phases of a CuCrO2 single crystal using nuclear magnetic and nuclear quadrupole resonances on 63,65Cu nuclei are presented. The measurements have been carried out in wide ranges of temperature (T = 4.2–300 K) and magnetic-field strength (Н = 0–94 kOe), with the magnetic fields being directed along a and c axes of the crystal. The components of the electric-field gradient tensor and the magnetic-shift tensor (Ka,c) have been determined. The temperature dependences Ka(H || a) and Kc(H || c) for the paramagnetic phase are described by the Curie–Weiss law and reproduce the behavior of the magnetic susceptibility (χa,c). The hyperfine field on a copper nucleus has been determined, which is equal to hhfa,c= 33 kOe/μB. Below the temperature ТN = 23.6 K, nuclear magnetic resonance and nuclear quadrupole resonance spectra for 63,65Cu nuclei have been recorded typical of helical magnetic structures, which are incommensurable with the lattice period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.