Abstract

A method of doping during the growth of thin films by ion-beam crystallization is proposed. By the example of Si and Sb, the possibility of controllably doping semiconductors during the ion-beam crystallization process is shown. A calibrated temperature dependence of the antimony vapor flow rate in the range from 150 to 400°C is obtained. It is established that, an increase in the evaporator temperature above 200°C brings about the accumulation of impurities in the layer growth direction. Silicon layers doped with antimony to a concentration of 1018 cm–3 are grown. It is shown that, as the evaporator temperature is increased, the efficiency of the activation of antimony in silicon nonlinearly decreases from ~100 to ~10–3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call