Abstract

This work focuses on the development of specific substrates for estrogen sulfotransferase (SULT1E1) to produce molecular imaging probes for this enzyme. SULT1E1 is a key enzyme in estrogen homeostasis, playing a central role in the prevention and development of human disease. In vitro sulfation assays showed alkyl and aryl substitutions to a fused heterocyclic system modeled after beta-naphthol (betaN), based on compounds that interact with the estrogen receptor, rendered several molecules with enhanced specificity for SULT1E1 over SULT1A1*1, SULT1A1*2, SULT1A3, and SULT2A1. Several 6-hydroxy-2-arylbenzothiazoles tested demonstrated excellent affinity--V(max)/K(m) ratios-and specificity for SULT1E1. K(m) values ranged from 0.12-2.36 microM. A strong correlation was observed between polarity of the 4'-sustituent on the 2-aryl moiety (Hammett sigma(p)) and the log(V(max)/K(m)) (r = 0.964). Substrate sensitivity is influenced by the acidity of the 6-phenolic group demonstrated by correlating its (1)H NMR chemical shift (delta(OH)) with the log(V(max)/K(m)) (r = 0.963). Acidity is mediated by the electron withdrawing capacity of the 4'-substituent outlined by the correlation of the C-2 (13)C NMR chemical shift (delta(C2)) with the log(V(max)/K(m)) (r = 0.987). 2-[4-(Methylamino)phenyl]-6-hydroxybenzothiazole (2b) was radiolabeled with carbon-11 ((11)C-(2b)) and used in vivo for microPET scanning and tissue metabolite identification. High PET signal was paralleled with the presence of radiolabeled (11)C-(2b)-6-O-sulfate and the SULT1E1 protein detected by western blot. Because this and other members of this family presenting specificity for SULT1E1 can be labeled with carbon-11 or fluorine-18, in vivo assays of SULT1E1 functional activity are now feasible in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call