Abstract
Rock cutting typically involves driving a rigid cutter across the rock surface at certain depth of cut and is used to remove rock material in various engineering applications. It has been established that there exist two distinct failure modes in rock cutting, i.e. ductile mode and brittle mode. The ductile mode takes precedence when the cut is shallow and the increase in the depth of cut leads to rock failure gradually shifted to brittle-dominant mode. The threshold depth or the critical transition depth, at which rock failure under cutting changes from the ductile to the brittle mode, is associated with not only the rock properties but also the cutting operational parameters and the understanding of this threshold is important to optimise the tool design and operational parameters. In this study, a new method termed the specific cutting energy transition model is proposed from an energy perspective which is demonstrated to be much more effective in identifying the critical transition depth compared with existing approaches. In the ductile failure cutting mode, the specific cutting energy is found to be independent of the depth of cut; but in the brittle failure cutting mode, the specific cutting energy is found to be dependent on the depth of cut following a power-law relationship. The critical transition depth is identified as the intersection point between these two relationships. Experimental tests on two types of rocks with different combinations of cutting velocity, depth of cut and back rake angle are conducted and the application of the proposed model on these cutting datasets has demonstrated that the model can provide a very effective tool to analyse the cutting mechanism and to identify the critical transition depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.