Abstract

Extensive experiments suggest that kurtosis-based fingerprint features are effective for specific emitter identification (SEI). Nevertheless, the lack of mechanistic explanation restricts the use of fingerprint features to a data-driven technique and further reduces the adaptability of the technique to other datasets. To address this issue, the mechanism how the phase noise of high-frequency oscillators and the nonlinearity of power amplifiers affect the kurtosis of communication signals is investigated. Mathematical models are derived for intentional modulation (IM) and unintentional modulation (UIM). Analysis indicates that the phase noise of high-frequency oscillators and the nonlinearity of power amplifiers affect the kurtosis frequency and amplitude, respectively. A novel SEI method based on frequency and amplitude of the signal kurtosis (FA-SK) is further proposed. Simulation and real-world experiments validate theoretical analysis and also confirm the efficiency and effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call