Abstract
Four molecular dynamics simulation trajectories of complexes between the wild-type or a mutant Antennapedia homeodomain and 2 DNA sequences were generated in order to probe the mechanisms governing the specificity of DNA recognition. The starting point was published affinity measurements showing that a single protein mutation combined with a replacement of 2 base pairs yields a new high-affinity complex, whereas the other combinations, with changes on only 1 macromolecule, exhibited lower affinity. The simulations of the 4 complexes yielded fluctuating networks of interaction. On average, these networks differ significantly, explaining the switch of affinity caused by the alterations in the macromolecules. The network of mostly hydrogen-bonding interactions involving several water molecules, which was suggested both by X-ray and NMR structures of the wild-type homeodomain and its DNA operator sequence, could be reproduced in the trajectory. More interestingly, the high-affinity complex with alterations in both the protein and the DNA yielded again a dynamic but very tight network of intermolecular interactions, however, attributing a significantly stronger role to direct hydrophobic interactions at the expense of water bridges. The other 2 homeodomain-DNA complexes, with only 1 molecule altered, show on average over the trajectories a clearly reduced number of protein-DNA interactions. The observations from these simulations suggest specific experiments and thus close the circle formed by biochemical, structural, and computational studies. The shift from a water-dominated to a more "dry" interface may prove important in the design of proteins binding DNA in a specific manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.