Abstract
Astrocytes are subtypes of glial cells involved in metabolic, structural, homeostatic, and neuroprotective processes that help neurons maintain viability. Insulin-like growth factors IGF-1 and IGF-2 are known to have neuroprotective effects on neurons and glial cells through interaction with specific receptors. IGF forms a complex with IGF-binding proteins (IGFBP) in nervous tissue and is released from the complex via IGFBP proteolysis by specific proteases. It has been reported that IGFBP-2, 5 and 6 are cleaved by specific proteases in the central nervous system (CNS), followed by IGF release; however, it was unknown whether IGFBP-4 was exposed to a particular proteolysis in nervous tissue. Using neurons and astrocytes derived from human induced pluripotent stem cell lines (hiPSC), as well as rat brain-sourced primary neuron-glia cultures, we demonstrated that IGFBP-4 is specifically cleaved in nervous tissue by the Pregnancy Associated Plasma Protein A (PAPP-A) protease and that this cleavage is IGF-dependent. Our results indicate that astrocyte rather than neuron PAPP-A cleaves IGFBP-4 in nervous tissue suggesting that this may be one of the fundamental mechanisms for IGF interchange between these two types of cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.