Abstract
Elastic electron scattering by the adsorbate covered Pt(100) single crystal surface and density of states (DOS) calculations highlight two peculiar channels for the primary electron energy consumption via the conventional threshold core level excitation coupled with particular electron transitions. The first channel affects the substrate atoms and implies Pt DOS shake-off and shake-up transitions and multiple plasmon excitations; the second one includes shake-off processes in the adsorbed layer and enables the valence state structure of the adsorbed species. The mechanism of electron transitions assumes that one-dimensional DOS at the vacuum level, in addition to vacant DOS at the Fermi level, is an active spot for allocation of excited electrons. The observed phenomena are supposed to be the general regularity of electron-solid interaction and a useful tool for fingerprinting the adsorbed layer at molecular level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.