Abstract

Higher eukaryotes contain tRNA transglycosylases that incorporate the guanine derivative queuine from the nutritional environment into specific tRNAs by exchange with guanine at position 34. Alterations in the queuosine content of specific tRNAs are suggested to be involved in regulatory mechanisms of major routes of metabolism during differentiation. Dictyostelium discoideum has been applied as a model to investigate the function of queuine or queuine-containing tRNAs. Axenic strains are supplied with queuine by peptone, but they grow equally well in a defined queuine-free medium. Queuine-lacking amoebae, starved in suspension culture for 24 h, lose their ability to differentiate into stalk cells and spores, whereas amoebae sufficiently supplied with queuine will overcome this metabolic stress and undergo further development when plated on agar. The results presented here show that D(-)-lactate occurs in the slime mould in millimolar amounts and that its level is remarkably decreased in queuine-lacking cells after 24 h of starvation in suspension culture. On isoelectric-focusing polyacrylamide gels, nine different forms of NAD-dependent D(-)-lactate dehydrogenase can be separated from extracts of vegetative cells, and six forms from extracts of the starved cells. Under queuine limitation, one form is missing in the starved cells. Low amounts of L(+)-lactate are usually found in vegetative amoebae but significantly less in queuine-lacking cells. Five forms of NAD-dependent L(+)-lactate dehydrogenase are detectable in extracts from vegetative, queuine-treated cells, and slight alterations occur in queuine-deficient amoebae. In the starved cells only one form of L(+)-lactate dehydrogenase is found, irrespective of the supply of queuine to the cells. A cytochrome of type b with an absorption maximum at 559 nm accumulates during starvation only in queuine-lacking cells; it might be a component of an NAD-independent lactic acid oxidoreductase as is cytochrome b 557 in yeast and be responsible for the reduced level of lactate in cells lacking queuine in tRNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.