Abstract
The development of artificial receptors for efficient recognition of analytes in water is a challenging task. Homooxacalix[3]arene-based receptor 1, which is selective toward primary ammoniums in organic solvents, was transferred into water following two different strategies: direct solubilization and micellar incorporation. Extensive 1H NMR studies showed that recognition of ammoniums is only observed in the case of micellar incorporation, highlighting the beneficial effect of the microenvironment of the micellar core. The selectivity of the system for primary ammoniums over secondary and tertiary ones was also maintained. The hydrophobic effect plays an important role in the recognition properties, which are counterion-dependent due to the energy penalty for the dissociation of certain ammonium salts in the apolar micellar core. This study shows that the straightforward self-assembly process used for the encapsulation of artificial receptors in micelles is an efficient strategy for developing water-soluble nanosized supramolecular recognition systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.