Abstract
The bacterial flagellar hook is a short, highly curved tubular structure connecting the rotary motor to the filament acting as a helical propeller. The bending flexibility of the hook allows it to work as a universal joint. A partial atomic model of the hook revealed a sliding intersubunit domain interaction along the protofilament to produce bending flexibility. However, it remained unclear how the tightly packed inner core domains can still permit axial extension and compression. We report advances in cryoEM image analysis for high-resolution, high-throughput structural analysis and a density map of the hook that reveals most of the secondary structures, including the terminal alpha helices forming a coiled coil. The orientations and axial packing interactions of these two alpha helices are distinctly different from those of the filament, allowing them to have a room for axial compression and extension for bending flexibility without impairing the mechanical stability of the hook.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.