Abstract

Abstract Aquaporins (AQPs) are channel proteins which facilitate the bidirectional membrane permeation of small neutral molecules such as water and glycerol. A convenient way to characterize their permeability is by growth of transformed Saccharomyces cerevisiae deletion strains on nutrient-limited substrates. We selected a yeast strain deficient in its endogenous ammonium transporters Mep1-3 and aquaglyceroporin Fps1 in order to study the ammonia permeability of heterologously expressed AQPs. Surprisingly, AQP-expression improved yeast growth at high, not low, concentrations of unprotonated ammonia. At neutral or mildly alkaline pH, ammonia concentrations above 10 μM decreased the growth rate and especially the number of yeast cell duplications, but did not affect the lag phase. AQP-expression raised the threshold to about 100 μM. The exchange of ammonium ions for amino acids or urea did not completely abolish this effect. AQPs capable of rescuing growth had a selectivity filter wide enough to permit passage of molecules larger than water but smaller than glycerol. It appears that the endogenous aquaglyceroporin Fps1 may, under alkaline conditions, be beneficial to yeast by facilitating the membrane permeation of an as yet unidentified molecule other than glycerol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.