Abstract

Specific salts effect is intensively studied from the prospective of modification of different physico-chemical properties of biomacromolecules. Limited knowledge of the specific salts effect on enzymes led us to address the influence of five sodium anions: sulfate, phosphate, chloride, bromide, and perchlorate, on catalytic and conformational properties of human rhinovirus-14 (HRV) 3C protease. The enzyme conformation was monitored by circular dichroism spectrum (CD) and by tyrosines fluorescence. Stability and flexibility of the enzyme have been analyzed by CD in the far-UV region, differential scanning calorimetry and molecular dynamics simulations, respectively. We showed significant influence of the anions on the enzyme properties in accordance with the Hofmeister effect. The HRV 3C protease in the presence of kosmotropic anions, in contrast with chaotropic anions, exhibits increased stability, rigidity. Correlations of stabilization effect of anions on the enzyme with their charge density and the rate constant of the enzyme with the viscosity B-coefficients of anions suggest direct interaction of the anions with HRV 3C protease. The role of stabilization and decreased fluctuation of the polypeptide chain of HRV 3C protease on its activation in the presence of kosmotropic anions is discussed within the frame of the macromolecular rate theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.