Abstract

Ethanol (EtOH) and dimethylsulfoxide (DMSO) are polar protic and aprotic organic solvents, respectively. In the present work, we have investigated the anion-specific lower critical solution temperature (LCST) and upper critical solution temperature (UCST) behaviors of poly(N-isopropylacrylamide) (PNIPAM) in the H2O-EtOH and H2O-DMSO mixtures. The turbidity and differential scanning calorimetry studies show that the LCST for the anions follows the Hofmeister series at the molar fraction of EtOH (xE) or DMSO (xD) of 6%. At xE of 26%, the UCST for the anions also follows the Hofmeister series because the dominating interactions for the UCST behavior are similar to that for the LCST behavior in the H2O-EtOH mixtures. In the H2O-DMSO mixture at xD of 70%, an inverted V-shaped anion series is observed for the UCST behavior of PNIPAM. Our studies demonstrate that the specific anion effect on the phase transition behaviors of PNIPAM is influenced not only by the anionic polarization of hydrogen bonding between solvent molecules and PNIPAM but also by the anion adsorption on the PNIPAM chain surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.