Abstract
Nucleic acid hybridization plays a critical role in medical diagnostics and nanotechnology, but its selectivity and robustness remain to be improved. Here, focusing on double-stranded nucleic acid-based hybridization, we present a series of related strategies. Above all, two simple strategies for enriching toehold-included double-stranded nucleic acids have been proposed. On this basis, two universal hybridization methods with higher selectivity than typical toehold exchange reaction and a long target detection method using short probes to extend the detectable length range are realized. We also provide a double-stranded nucleic acids-catalyzed cycle amplification reaction to improve sensitivity, which has superior interference resistance and excellent discrimination for single-base mismatches. Besides, double-stranded nucleic acids with forked toeholds are used as essential elements to construct a series of logic gates that can evaluate different input combinations. Given the unique advantages of double-stranded nucleic acids, we expect the current work to advance the application of double-stranded nucleic acid-based hybridization in medical diagnostics and nanotechnology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.