Abstract
The frequency of murine CTL precursors (CTLp) that recognize the human histocompatibility Ag HLA-A2 and HLA-B7 was measured and found to be approximately two orders of magnitude lower than the frequency of CTLp that recognize murine H-2 alloantigens. The possible contribution of other cell surface molecules to this difference in response was addressed by expression of the H-2Ld molecule on a human cell and the HLA-B7 molecule on a murine cell. It was found that both human and murine H-2Ld expressing cells elicited comparable levels of H-2Ld specific CTL. Although murine HLA-B7 positive cells stimulated a higher frequency of HLA-B7-specific CTLp than did human cells, this appeared to be largely due to stimulation of CTLp that recognized HLA-B7 in the context of H-2 molecules; consequently, it was concluded that the difference in the frequency of murine CTLp elicited by human and murine class I Ag is due to species specific structural differences in these molecules. The regions of the class I molecule that were responsible for this difference were mapped using chimeric class I molecules constructed to replace domains of the human molecule with their murine counterparts. It was found that the frequency of CTLp is controlled by structures within the alpha 1 and alpha 2 domains of the molecule. These results are discussed in the light of models for T cell recognition of class I Ag and the diversification of the T cell receptor repertoire.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.