Abstract

Abalone eggs are contained within a rigid, elevated vitelline envelope through which the sperm must pass before reaching the egg cell membrane. Abalone spermatozoa possess an acrosomal protein called lysin that creates a hole in the egg vitelline envelope by a nonenzymatic mechanism. Lysins from two species of abalone, termed pink and red, which share the same habitat, exhibit species specificity in the dissolution of isolated egg envelopes. Cloning and sequencing the cDNAs for pink and red abalone lysins reveal transcript lengths of approximately 660 nucleotides. The open reading frames of 465 (pink) and 462 (red) nucleotides show a 13% difference. The 3' untranslated regions before the poly(A) tails are 170 (pink) and 165 (red) nucleotides long and differ from each other by about 7%. The protein sequences show nearly identical signal sequences of 18 amino acids for both lysins. The mature protein is 137 amino acids in the pink abalone and 136 in the red abalone; the two mature lysins differ in 29 of 137 amino acids (21%). The most variable region, which may account for lysin's species specificity, is at the NH2 terminus, where 11 of the 15 amino acids differ between the two species. Predictions of secondary structure indicate that both lysins contain four homologous amphiphilic alpha-helices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call