Abstract
There is evidence that microplastic (MP) pollution can negatively influence coral health; however, mechanisms are unknown and most studies have used MP exposure concentrations that are considerably higher than current environmental conditions. Furthermore, whether MP exposure influences coral susceptibility to other stressors such as ocean warming is unknown. Our objective was to determine the physiology response of corals exposed to MP concentrations that have been observed in-situ at ambient and elevated temperature that replicates ocean warming. Here, two sets of short-term experiments were conducted at ambient and elevated temperature, exposing the corals Acroporasp. and Seriatopora hystrix to microspheres and microfibres. Throughout the experiments, gross photosynthesis and net respiration was quantified using a 4-chamber coral respirometer, and photosynthetic yields of photosystem II were measured using Pulse-Amplitude Modulated (PAM) fluorometry. Results indicate the effect of MP exposure is dependent on MP type, coral species, and temperature. MP fibres (but not spheres) reduced photosynthetic capability of Acropora sp., with a 41% decrease in photochemical efficiency at ambient temperature over 12 days. No additional stress response was observed at elevated temperature; photosynthetic performance significantly increased in Seriatopora hystrix exposed to MP spheres. These findings show that a disruption to coral photosynthetic ability can occur at MP concentrations that have been observed in the marine environment and that MP pollution impact on corals remains an important aspect for further research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.