Abstract

Background and PurposeSpecific, high potency receptor antagonists are valuable tools when evaluating animal and human physiology. Within the glucose‐dependent, insulinotropic polypeptide (GIP) system, considerable attention has been given to the presumed GIP receptor antagonist, (Pro3)GIP, and its effect in murine studies. We conducted a pharmacological analysis of this ligand including interspecies differences between the rodent and human GIP system.Experimental ApproachTransiently transfected COS‐7 cells were assessed for cAMP accumulation upon ligand stimulation and assayed in competition binding using 125I‐human GIP. Using isolated perfused pancreata both from wild type and GIP receptor‐deficient rodents, insulin‐releasing, glucagon‐releasing and somatostatin‐releasing properties in response to species‐specific GIP and (Pro3)GIP analogues were evaluated.Key ResultsHuman (Pro3)GIP is a full agonist at human GIP receptors with similar efficacy (E max) for cAMP production as human GIP, while both rat and mouse(Pro3)GIP were partial agonists on their corresponding receptors. Rodent GIPs are more potent and efficacious at their receptors than human GIP. In perfused pancreata in the presence of 7 mM glucose, both rodent (Pro3)GIP analogues induced modest insulin, glucagon and somatostatin secretion, corresponding to the partial agonist activities observed in cAMP production.Conclusions and ImplicationsWhen evaluating new compounds, it is important to consider interspecies differences both at the receptor and ligand level. Thus, in rodent models, human GIP is a comparatively weak partial agonist. Human (Pro3)GIP was not an antagonist at human GIP receptors, so there is still a need for a potent antagonist in order to elucidate the physiology of human GIP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.