Abstract

BackgroundThe application of next-generation sequencing to the study of the vaginal microbiome is revealing the spectrum of microbial communities that inhabit the human vagina. High-resolution identification of bacterial taxa, minimally to the species level, is necessary to fully understand the association of the vaginal microbiome with bacterial vaginosis, sexually transmitted infections, pregnancy complications, menopause, and other physiological and infectious conditions. However, most current taxonomic assignment strategies based on metagenomic 16S rDNA sequence analysis provide at best a genus-level resolution. While surveys of 16S rRNA gene sequences are common in microbiome studies, few well-curated, body-site-specific reference databases of 16S rRNA gene sequences are available, and no such resource is available for vaginal microbiome studies.ResultsWe constructed the Vaginal 16S rDNA Reference Database, a comprehensive and non-redundant database of 16S rDNA reference sequences for bacterial taxa likely to be associated with vaginal health, and we developed STIRRUPS, a new method that employs the USEARCH algorithm with a curated reference database for rapid species-level classification of 16S rDNA partial sequences. The method was applied to two datasets of V1-V3 16S rDNA reads: one generated from a mock community containing DNA from six bacterial strains associated with vaginal health, and a second generated from over 1,000 mid-vaginal samples collected as part of the Vaginal Human Microbiome Project at Virginia Commonwealth University. In both datasets, STIRRUPS, used in conjunction with the Vaginal 16S rDNA Reference Database, classified more than 95% of processed reads to a species-level taxon using a 97% global identity threshold for assignment.ConclusionsThis database and method provide accurate species-level classifications of metagenomic 16S rDNA sequence reads that will be useful for analysis and comparison of microbiome profiles from vaginal samples. STIRRUPS can be used to classify 16S rDNA sequence reads from other ecological niches if an appropriate reference database of 16S rDNA sequences is available.

Highlights

  • The application of next-generation sequencing to the study of the vaginal microbiome is revealing the spectrum of microbial communities that inhabit the human vagina

  • Given the challenges associated with taxonomic assignment of 16S rDNA sequences using standard approaches, we developed a comprehensive, non-redundant 16S rDNA reference database of bacterial taxa commonly found in the vagina for use in classification of metagenomic 16S rDNA sequence data derived from bacteria in vaginal samples

  • The Vaginal 16S rDNA Reference Database Currently, the Vaginal 16S rDNA Reference Database includes 973 partial (V1-V3) 16S rDNA reference sequences from bacterial genera and species likely to be of importance in studies of the vaginal microbiome

Read more

Summary

Introduction

The application of next-generation sequencing to the study of the vaginal microbiome is revealing the spectrum of microbial communities that inhabit the human vagina. Most current taxonomic assignment strategies based on metagenomic 16S rDNA sequence analysis provide at best a genus-level resolution. Studies of the human microbiome are producing large datasets of partial 16S rDNA sequences from prokaryotic colonizers of various human body sites. These metagenomic surveys of microbial communities bypass the need for isolating and cultivating individual species, As part of the Vaginal Human Microbiome Project at Virginia Commonwealth University (VCU), we are studying the association of the vaginal microbiome with various physiological and infectious conditions, and we are assessing how host genetic and environmental factors contribute to the composition of the vaginal microbiome [2,3]. Others have recently used alignment-based methods (e.g., MEGAN[8,9]) to classify 16S rDNA reads, and the results of these methods are highly dependent on reference database quality and completeness

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call