Abstract

The metabolism and mutagenicity of 2-acetylaminofluorene were measured using freshly prepared intact bladder and liver cells from the cow, dog and rat. High pressure liquid chromatography was used to separate 2-acetylaminofluorene metabolites, and Salmonella typhimurium, strain TA98, was used to detect mutagenic intermediates. Species differences as well as animal-to-animal variation within a species were observed. Mutagenic activity with 2-acetylaminofluorene was greater with cow bladder cells than with dog or rat bladder cells. However, dog bladder cells were most active in metabolizing 2-acetylaminofluorene, and rat bladder cells were least active. Liver cells from all three species metabolized 2-acetylaminofluorene to mutagens for Salmonella, with dog and cow cells being more active than rat liver cells. However, cow liver cells were the most active in metabolizing 2-acetylaminofluorene, followed by rat and dog cells. With all cell types studied, except rat bladder cells, aminofluorene was the major metabolite detected. Carbon and N-hydroxylated products were produced by liver and bladder cells of the three species and glucuronide and sulfate conjugates of the metabolites were detected from both cell types. Correlations between mutagenic activity and the level of metabolism or any individual metabolite were not apparent. The data suggest that the relative contribution of bladder cell metabolism in aromatic amine induced bladder cancer may vary with the species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.