Abstract

Much recent ecological research has centred on the interrelations between species diversity and ecological processes. In the present study, I show how species traits may aid in comprehending ecology by studying the link between an environmental variable and functional traits. I examined the composition of species traits with a theoretically underpinned relationship to ecological processes along a pH gradient. I focused on body size, reproductive output, life cycle length and feeding habit of mayflies and stoneflies. In mayfly assemblages, I found smaller body size, greater reproductive output, faster life cycles and a larger proportion of gathering collectors and scrapers with increasing pH. In stonefly assemblages, I found smaller body size, greater reproductive output and faster life cycles at sites with a history of long-term natural acidification, but no clear trends in feeding habits and in most traits where acidification is anthropogenic. The results suggest that mayflies and stoneflies exhibit different ecological functions following different ecological strategies. Mayflies follow an opportunistic strategy relative to stoneflies, likely facilitating high rates of ecological processes with respect to the autotrophic resource base at neutral sites. Relative to mayflies, stoneflies follow an equilibrium strategy contributing to ecological functioning in heterotrophic ecosystems and likely maintaining heterotrophic processes despite the erosion of species diversity in response to acidification. The rules governing an ecological community may be more readily revealed by studying the distribution of species traits instead of species diversity; by studying traits, we are likely to improve our understanding of the workings of ecological communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.