Abstract
While most studies of the relationship between biodiversity and ecosystem functioning have examined randomized diversity losses, several recent experiments have employed nested, realistic designs and found that realistic species losses had larger consequences than random losses for ecosystem functioning. Progressive, realistic, biodiversity losses are generally strongly nested, but this nestedness is a potentially confounding effect. Here, we address whether nonrandom trait loss or degree of nestedness drives the relationship between diversity and productivity in a realistic biodiversity-loss experiment. We isolated the effect of nestedness through post hoc analyses of data from an experimental biodiversity manipulation in a California serpentine grassland. We found that the order in which plant traits are lost as diversity declines influences the diversity-productivity relationship more than the degree of nestedness does. Understanding the relationship between the expected order of species loss and functional traits is becoming increasingly important in the face of ongoing biodiversity loss worldwide. Our findings illustrate the importance of species composition and the order of species loss, rather than nestedness per se, for understanding the mechanisms underlying the effects of realistic species losses on ecosystem functioning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.