Abstract

The population density of a Daphnia species seems more dependent on properties specific to the species than on those specific to the point in the season, location within a lake basin or the given lake itself. In spite of week-to-week fluctuations, the population density for each of two common European Daphniaspecies was found to be remarkably similar within single lakes (from station to station on a single date, and from date to date at a single station) as well as from lake to lake, regardless of trophic state. All lakes on all dates revealed densities in the range 10–50 ind l−1 for the smaller-bodied D. cucullata and 1–5 ind l−1 for the larger-bodied D. hyalina, in spite of different intensity of reproduction resulting from different food levels (chlorophyll a between 0.2 and 4.2 μg/l). It can be asserted that the population density of each species remains far below the carrying capacity of the habitat K, and does not depend on food levels, which merely set the rate of population increase, while the population density reflects the species' vulnerability to predation by planktivorous fish. The reactive distance (the distance over which a foraging fish can see its prey) in 1+ roach, a dominant planktivore in the lakes studied, has been found to be twice as great for D. hyalina as for D. cucullata, whatever the light intensity. The relative reactive field volume was therefore an order of magnitude greater for the former than for the latter, showing that the densities of the two prey species would be assessed by a foraging roach as equal when, in reality, they differed by an order of magnitude, as they do in various lakes and in various seasons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call