Abstract

Where serpentine soils exist, variation in soil properties affects plant species distribution at both coarse and fine spatial scales. The New Idria (California, USA) serpentine mass has barren areas, supporting only sparse shrub and tree islands, adjacent to areas of densely-vegetated serpentine chaparral. To identify factors limiting growth on barren relative to vegetated serpentine soils, we analyzed soils from barren, shrub-island within barren, and vegetated areas and foliage from shrub-island and vegetated areas. We also grew Ceanothus cuneatus (native evergreen shrub), Achillea millefolium (native perennial forb), and Bromus madritensis ssp. rubens (invasive annual grass) in soils from barren and vegetated areas amended factorially with N, K, and Ca in a pot study. In well-watered pots, biomass was greater by 5-, 14-, and 33-fold for Ceanothus, Achillea, and Bromus, respectively, on vegetated-area-collected soils than on barren-collected soils, indicating a strong soil chemistry effect. Although field soil data suggested nutrient deficiency and not heavy metal toxicity, pot study plant data indicated otherwise for two of the three species. On barren-collected soils, only Ceanothus responded positively to added N and Ca and did not show greater foliar Mg or heavy metal (Fe, Ni, Cr, Co, Zn) concentrations than on vegetated-area-collected soils. Ceanothus maintained lower root Mg and heavy metal (Fe, Ni, Cr, Co) concentrations on barren soils and translocated less heavy metal (Fe, Ni, Cr, Co, Mn, Cu) from roots to foliage than Achillea and Bromus. Achillea and Bromus showed significant log-log biomass relationships with foliar Ca:Mg (+), Mg (-), and heavy metals (Fe, Ni, Cr, Co, Mn, Cu, Zn) (-), while Ceanothus showed relationships only with Ca:Mg (+) and Mg (-). The New Idria barren-vegetated pattern appears to be maintained by different factors for different species or functional types— low Ca:Mg ratios on barrens for all species tested, high heavy metal concentrations for Achillea and Bromus, and low macronutrient (N) concentrations for Ceanothus. Combined data from this and other studies suggest high heavy metal concentrations more strongly affect herbaceous than woody species, contributing to variation in species distribution on serpentine soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call